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We propose a method that is able to analyze chaotic time series gained from experimental data. The method
allows us to identify scalar time-delay systems. If the dynamics of the system under investigation is governed
by a scalar time-delay differential equation of the formdy(t)/dt5h„y(t),y(t2t0)…, the delay timet0 and the
functionh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. It turns out
that the method is not strongly sensitive to additional noise. We successfully apply the method to various time
series taken from a computer experiment and two different electronic oscillators.@S1063-651X~96!50610-0#

PACS number~s!: 05.45.1b

Time series analysis of chaotic systems has gained much
interest in recent years. Especially, embedding of time series
in a reconstructed phase space with the help of time-delayed
coordinates was widely used to estimate fractal dimensions
of chaotic attractors@1,2# and Lyapunov exponents@3#. It is
the advantage of embedding techniques that the time series
of only one variable has to be analyzed, even if the investi-
gated system is multidimensional. Furthermore, it can be ap-
plied, in principle, to any dynamical system. Unfortunately,
the embedding techniques only yield information if the di-
mensionality of the chaotic attractor under investigation is
low. Another drawback is the fact that it does not give any
information about the structure of the dynamical system, in
the sense that one is able to identify the underlying instabili-
ties. In the following, we propose a method which is taylor-
suited to identify scalar systems with a time-delay-induced
instability. We will show that the differential equation can be
recovered from the time series, if the investigated dynamics
obeys a scalar time-delay differential equation. There are no
restrictions to the dimensionality of the chaotic attractor. Ad-
ditionally, the method has the advantage of not being
strongly sensitive to noise.

We consider the time evolution of scalar time-delay dif-
ferential equations

ẏ~ t !5h„y~ t !,y~ t2t0!…, ~1!

with the initial condition

y~ t !5y0~ t !, 2t0,t,0. ~2!

The dynamics is supposed to be bounded in the counterdo-
main D, y(t)PD,; t. In Eq. ~1!, the time derivative of
y(t) does not only depend on the state of system at the time
t, but there also exist nonlocal correlations in time, because
the function h additionally depends on the time-delayed
value y(t2t0). These nonlocal correlations in time enable
scalar time-delay systems to exhibit a complex time evolu-
tion. The number of positive Lyapunov exponents increases

with the delay timet0 @4#. Scalar time-delay systems, there-
fore, constitute a major class of dynamical systems which
exhibit hyperchaos@5#. In general, though, the nonlocal cor-
relations in time are not at all obvious from the time series. A
state of the system~1! is uniquely defined by a function on
an interval of lengtht0. Therefore, the phase space of scalar
time-delay systems must be considered as infinite dimen-
sional. The trajectory in the infinite dimensional phase space
yW (t)5$y(t8),t2t0,t8,t% is easily obtained from the time
series. The scalar time seriesy(t), therefore, encompasses
the complete information about the trajectoryyW (t) in the
infinite dimensional phase space.

The main idea of our analysis method is the following.
We project the trajectoryyW (t) from the infinite dimensional
phase space to a three-dimensional space which is spanned
by the coordinates@yt0

5y(t2t0),y5y(t),ẏ5 ẏ(t)#. In the

(yt0
,y,ẏ) space the differential equation~1! determines a

two-dimensional surfaceh. The projected trajectory
yW t0

(t)5„y(t2t0),y(t),ẏ(t)…, therefore, is confined to the

surfaceh and is not able to explore other directions of the
(yt0

,y,ẏ) space. From this, we conjecture, that the fractal
dimension of the projected attractor has to be between 1 and
2. Furthermore, it follows that any intersection of the chaotic
attractor with a surfacek(yt0

,y,ẏ)50 yields a curve. More
precisely spoken, if one transforms the projected trajectory
yW t0

(t) to a series of pointsyW t0
i 5(yt0

i ,yi ,ẏi) that fulfill the

condition k(yt0
i ,yi ,ẏi)50, the series of points (yt0

i ,yi ,ẏi)

contracts to a curve and its dimension has to be less than or
equal to 1. In general, it cannot be expected that one is able
to project a chaotic attractor of arbitrary dimension to a
three-dimensional space, in the way that its projection is em-
bedded in a two-dimensional surface. We, nevertheless,
demonstrate that this is always possible for chaotic attractors
of scalar time-delay systems~1!.

In the following, we will show that such a finding can be
used to reveal nonlocal correlations in time from the time
series. If the dynamics is of the scalar time-delay type~1!,
the appropriate delay timet0 and the functionh(y,yt0

) can
be recovered. The trajectory in the infinite dimensional phase
space yW (t) is projected to several three-dimensional
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(yt ,y,ẏ) spaces upon variation oft. The appropriate value
t5t0 is just the one for which the projected trajectoryyW t lies
on a surface, representing a fingerprint of the time-delay-
induced instability. Projecting the trajectoryyW to the
(yt0

,y,ẏ) space, the projected trajectory yields the surface

h(y,yt0
) in the counterdomainD3D. With a fit procedure

the yet unknown functionh(y,yt0
) can be determined in

D3D. Therefore, the complete scalar time-delay differential
equation has been recovered from the time series. In some
cases, it is more convenient to intersect the trajectoryyW t in
the (yt ,y,ẏ) space with a surfacek(yt ,y,ẏ)50, which
yields a series of pointsyW t

i 5(yt
i ,yi ,ẏi). Fort5t0, the points

come to lie on a curve and the fractal dimension of the point
set has to be less than or equal to 1.

The analysis method is also applicable if noise is added to
the time series. The only effect of additional noise is that the
projected time series in the (yt0

,y,ẏ) space is not perfectly
enclosed in a two-dimensional surface, but the surface is
somewhat blurred up. If the analysis is done with an inter-
sected trajectory, the alignment of the noisy data is not per-
fect. The arguments presented above do not require the dy-
namics to be settled on its chaotic attractor. Therefore, it is
also possible to analyze transient chaotic dynamics. Re-
cently, the coexistence of attractors of time-delay systems
has been pointed out@6#. The only requirement for the analy-
sis method is that the trajectory obeys the time-evolution
equation~1! which holds for all coexisting attractors in a
scalar time-delay system. Therefore, the method is appli-
cable, no matter in which attractor the dynamics has decided
to settle. The analysis requires only short time series, which
makes it well-suited to be applied on experimental situations.
We successfully apply the method to time series gained from
a computer experiment and from two different electronic os-
cillators. We show the robustness of the method to additional
noise by analyzing noisy time series.

We numerically calculated the time series of the scalar
time-delay differential equation

ẏ~ t !5 f ~yt0
!2g~y!, ~3!

f ~yt0
!5

2.7yt0

11yt0
101c0 ,

g~y!520.567y118.17y2238.35y3128.56y426.8y52c0 ,

with the initial condition

y~ t !5y0~ t !, 2t0,t,0, ~4!

which is of the form~1! with h(yt0
,y)5 f (yt0

)2g(y). The

functiong has been chosen to be noninvertible in the coun-
terdomainD. The definition of the functionsf andg is am-
biguous in the sense that adding a constantc0 to f can al-
ways be cancelled by subtractingc0 from g without
changingh and, therefore, leaving the dynamics of Eq.~3!
unchanged. The control parameter is the delay timet0.
Equation~3! is somewhat similar to the Mackey-Glass equa-
tion @7#, except for the functiong, which is linear in the

Mackey-Glass system. Part of the time series is shown in
Fig. 1. We used 500 000 data points with a time step of
0.01 for the analysis. The dimension of the chaotic attractor
was estimated with the help of the Grassberger-Procaccia
algorithm@2# to be clearly larger than 5. To recover the delay
time t0 and the functionsf andg from the time series, we
applied the analysis method outlined above. We projected
the trajectoryyW (t) from the infinite dimensional phase space
to several (yt ,y,ẏ)spaces under variation oft and inter-
sected the projected trajectoryyW t with the (y51.1) plane,
which is repeatedly traversed by the trajectory, as can be
seen in Fig. 1. The results are the timest i where the trajec-
tory traverses the (y51.1) plane and the intersection points
yW t
i 5(yt

i ,1.1,ẏi). For t being the appropriate valuet0, the

point setyW t0
i is correlated via Eq.~3!,

ẏi5 f ~yt0
i !2g~1.1! ~5!

and, therefore, must have a fractal dimension less than or
equal to 1. Then, we ordered the (yt

i ,ẏi) points with respect
to the values ofyt

i . A simple measure for the alignment of
the points is the lengthL of a polygon line connecting all

FIG. 2. LengthL of the polygon line connecting all ordered

points of the projected point set (yt
i ,ẏi) versust. L has been nor-

malized so that a maximally uncorrelated point set has the value
L51.0. The inset shows a close-up of thet axis around the local
minimum att5t0540.00. Additionally,L(t) curves gained from
the analysis of noisy time series are shown~no additional noise,
straight line; signal-to-noise ratio of 100, open circles; and signal-
to-noise ratio of 10, squares!.

FIG. 1. Time series of the scalar time-delay system~3! obtained
from a computer experiment (t0540.00).
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ordered points (yt
i ,ẏi). The lengthL as a function oft is

shown in Fig. 2. Fort50, L(t) is minimal, because the
points (yt

i ,ẏi) are ordered along the diagonal in the
(yt

i ,ẏi) plane.L(t) increases witht and eventually reaches
a plateau, where the points (yt

i ,ẏi) are maximally uncorre-
lated. This is due to short-time correlations of the signal.
Eventually, L(t) decreases again and shows a dip fort
reaching the appropriate valuet0. A further decrease of
L(t) is observed fort52t0. In Figs. 3~a!–3~c!, we show the
projectionsyW t(t) of the trajectoryyW (t) from the infinite di-
mensional phase space to different (yt ,y,ẏ) spaces under
variation of t. Clearly, for t approaching the appropriate
valuet0, the appearance of the projected trajectory changes.
In Fig. 3~c!, the projected trajectory is embedded in a surface
which is determined by the functionh. In Figs. 3~d!–3~f! we
show the point set (yt

i ,ẏi) resulting from the intersection of

the projected trajectoryyW t with the (y51.1) plane. The point
set is projected to the (yt ,ẏ) plane. According to Eq.~5!, the
points are aligned along the functionf for t5t0. With the
appropriate valuet0, we are in the position to recover the
functions f andg from the time series. The functionsf and
g are ambiguous with respect to the addition of a constant
termc0, as has been outlined above. Therefore, one is free to
remove the ambiguity by invoking an additional condition,
which we choose to be

g~1.1!50. ~6!

Then, Eq.~5! reads

ẏi5 f ~yt0
i !. ~7!

Therefore, functionf is recovered by analyzing the intersec-
tion pointsyW t0

i in the (ẏ,yt0
) plane. To recover the function

g, we intersected the time series with the (yt0
51.1) plane.

The resulting point setyW t0
j 5( ẏ j ,yj ) is correlated via

ẏ j5 f ~1.1!2g~yj !. ~8!

The valuef (1.1) has been taken from the time series using
Eq. ~7!. In Figs. 4~a!–4~b!, we compare the functionsf and
g as they have been defined in Eq.~3! with the recovery of
the functionsf and g from the time series. We emphasize
that a no fit parameter is involved.

We checked the robustness of the method to additional
noise by analyzing noisy time series, which had been pro-
duced by adding Gaussian noise to the time series of Eq.~3!.
We analyzed two noisy time series with a signal-to-noise
ratio ~SNR! of 10 and 100. In both cases, the additional noise
was partially removed with a nearest-neighbor filter~for a
SNR of 100, average over six neighbors; for a SNR of 10,
average over 20 neighbors!. After that, the noisy time series
were analyzed in the same way as has been described above.
The inset of Fig. 2 shows the result of the analysis. The
length L of the polygon line exhibits a local minimum for
t5t0. In the case of the time series with a SNR of 10, the
local minimum is again sharp, but somewhat less pro-
nounced. We conjecture that the method is robust with re-
spect to additional noise and, therefore, well suited for the
analysis of experimental data.

Finally, we successfully applied the method to experimen-
tal time series gained from two different types of electronic
oscillators. The first one is the Shinriki oscillator@8,9#. The
dynamics of the second oscillator@10# is time-delay induced
and mimics the dynamics of the Mackey-Glass equation. In
both cases, we intersected the trajectory with the (ẏ50)
plane. The resulting point set was represented in a (yt ,y)
space with different values oft. Then, we ordered the points

FIG. 3. ~a!–~c! TrajectoryyW t(t) which has been projected from

the infinite dimensional phase space to the (yt ,y,ẏ) space under
variation oft. ~a! t520.00,~b! t539.60,~c! t5t0540.00.~d!–~f!

Projected point setyW t
i 5(yt

i ,ẏi) resulting from the intersection of

the projected trajectoryyW t(t) with the (y51.1) plane under varia-
tion of t. ~d! t520.00,~e! t539.60,~f! t5t0540.00.

FIG. 4. ~a! Comparison of the functionf ~line! of Eq. ~3! with
its recovery from the time series~points!. ~b! Comparison of the
function g ~solid line! of Eq. ~3! with its recovery from the time
series~circles!.
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with respect toyt and the lengthL of a polygon line con-
necting all ordered points (yt

i ,yi) was measured. The results
are presented in Figs. 5~a! and 5~b!. In both cases,L(t) has
a local minimum for small values oft as a result of short-
range correlations in time.L(t) increases in time and
reaches a plateau. For the Shinriki oscillator, no further de-
crease ofL(t) is observed for increasingt @Fig. 5~a!#. Such
a finding clearly shows that the dynamics of the Shinriki
oscillator is not time-delay induced. Analyzing the Mackey-
Glass oscillator@Fig. 5~b!#, one finds sharp dips inL(t) for
t5t0 andt52t0. This is a direct evidence for correlations
in time, which are induced by the time delay~for details, see
@11#!. Obviously, the method is able to identify nonlocal cor-
relations in time from the time series. Eventually, the non-
linear characteristics of the electronic oscillator is compared
to its recovery from the time series@Fig. 5~c!#.

In conclusion, we have presented a method capable of
revealing nonlocal correlations in time of scalar systems by
analyzing the time series. If the dynamics of the investigated
system is governed by a scalar time-delay differential equa-
tion, we are able to recover the scalar time-delay differential
equation. There are no constraints on the dimensionality of
the attractor. Since scalar time-delay systems are able to ex-
hibit high-dimensional chaos, our method might pave the
road to inspecting high-dimensional chaotic systems, where
conventional time-series analysis techniques already fail.
Furthermore, the motion is not required to be settled on its
attractor. The method is not strongly sensitive to additional
noise. We have successfully applied the method to time se-
ries gained from a computer experiment and to experimental
data gained from two different types of electronic oscillators.

While, in general, the verification of dynamical models is
a highly complicated task, we have shown that the identifi-
cation of scalar time-delay systems can be accomplished eas-
ily and, thus, allows a detailed comparison of the model
equation with experimental time series. In several disci-
plines, e.g., hydrodynamics@12# , chemistry@13#, laser phys-
ics @14#, and physiology@7,15#, time-delay effects have been
proposed to induce dynamical instabilities. With the help of
our method, there is a good chance to verify these models by
analyzing the experimental time series. If the dynamics is
indeed governed by a time delay, the delay time and the
time-evolution equation can be determined. Current and fu-
ture research activities of the authors concentrate on extend-
ing the time-series analysis method to nonscalar time-delay
systems as well as to time-delay systems with multiple delay
times.
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FIG. 5. LengthL of the polygon line connecting all ordered

points of the projected point setyW t
i 5(yt

i ,yi) versust for ~a! the
Shinriki, and~b! the Mackey-Glass oscillator.L(t) has been nor-
malized so that it has the valueL51 for an uncorrelated point set.
~c! Comparison of the nonlinear characteristics of the Mackey-
Glass oscillator, which is the functionf (yt0

) of an ansatz of the
form h(y,yt0

)5 f (yt0
)1g(y), measured directly on the oscillator

~line! with its recovery from the time series~dots!.
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