PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996

Tool to recover scalar time-delay systems from experimental time series
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We propose a method that is able to analyze chaotic time series gained from experimental data. The method
allows us to identify scalar time-delay systems. If the dynamics of the system under investigation is governed
by a scalar time-delay differential equation of the fady(t)/dt=h(y(t),y(t— 75)), the delay timery and the
functionh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. It turns out
that the method is not strongly sensitive to additional noise. We successfully apply the method to various time
series taken from a computer experiment and two different electronic oscillf5di863-651X96)50610-0

PACS numbe(s): 05.45+b

Time series analysis of chaotic systems has gained muchith the delay timery [4]. Scalar time-delay systems, there-
interest in recent years. Especially, embedding of time seriefore, constitute a major class of dynamical systems which
in a reconstructed phase space with the help of time-delayegkhibit hyperchao$5]. In general, though, the nonlocal cor-
coordinates was widely used to estimate fractal dimensiongelations in time are not at all obvious from the time series. A
of chaotic attractor§l,2] and Lyapunov exponenf8]. Itis  state of the systerfl) is uniquely defined by a function on
the advantage of embedding techniques that the time series interval of lengthr,. Therefore, the phase space of scalar
of only one variable has to be analyzed, even if the investitime-delay systems must be considered as infinite dimen-
gated system is multidimensional. Furthermore, it can be apsional. The trajectory in the infinite dimensional phase space
plied, in principle, to any dynamical system. Unfortunately,y(t):{y(tr)’t_ 7o<t'<t} is easily obtained from the time
the embedding techniques only yield information if the di- gafies The scalar time serigét), therefore, encompasses
mensionality of the chaotic attractor under investigation is,[h lete inf i bout the traiectonet) in th
low. Another drawback is the fact that it does not give any. € compiete information about the trajec oy¥t) in the

nfinite dimensional phase space.

information about the structure of the dynamical system, in The main idea of our analvsis method is the followin
the sense that one is able to identify the underlying instabili- ) . - y ST ) 9-
ties. In the following, we propose a method which is taonr-VVe project the trajectory(t) from the infinite dimensional

suited to identify scalar systems with a time-delay-induced®h@se space to a three-dimensional space which is spanned
instability. We will show that the differential equation can be by the coordinategy, =y(t—7o),y=y(t),y=y(t)]. In the
recovered from the time series, if the investigated dynamic : ; ; ; ;

9 y gyro,y,y) space the differential equatiofl) determines a

obeys a scalar time-delay differential equation. There are nt di ional taceh. Th ‘ected  traiect
restrictions to the dimensionality of the chaotic attractor. Agd-'Wo-dimensional - surtacen. € projecte rajectory

ditionally, the method has the advantage of not bein@/To(t)Z(y(t—To),y(t)&(t)), therefore, is confined to the
strongly sensitive to noise. surfaceh and is not able to explore other directions of the

We consider the time evolution of scalar time'delay dif- (yTO'y,y) space. From this' we Conjecture, that the fractal

ferential equations dimension of the projected attractor has to be between 1 and
2. Furthermore, it follows that any intersection of the chaotic

y()=h(y(t),y(t= 7)), D attractor with a surfacé(y. ,y,y)=0 yields a curve. More
with the initial condition precisely spoken, if one transforms the projected trajectory
Y, (1) to a series of pointy, =(y. .y'.y") that fulfill the
y(t)=yo(t), —7o<t<0. @ condition k(y',.y',y) =0, the series of pointsy(_,y'y")

The dynamics is supposed to be bounded in the counterd&ontracts to a curve and its dimension has to be less than or
main D, y(t)eD,¥ t. In Eq. (1), the time derivative of equal to 1. In general, it cannot be expected that one is able
y(t) does not only depend on the state of system at the tim Project a chaotic attractor of arbitrary dimension to a
t, but there also exist nonlocal correlations in time, becausg‘rgg'%'mens'onal sdpace, In th? wayfthat Its prOjeCtloan]S lem-
the function h additionally depends on the time-delayed edaded n a two-.lmensmna surtace. We, ngvert eless,
value y(t— 7). These nonlocal correlations in time enable demonstrate that this is always possible for chaotic attractors
scalar time-delay systems to exhibit a complex time evolyOf scalar time-delay systentd).

tion. The number of positive Lyapunov exponents increases In the following, we will show Fhat s_uch a finding can _be
used to reveal nonlocal correlations in time from the time

series. If the dynamics is of the scalar time-delay type

*Author to whom correspondence should be addressed: Prof. DF.he appropriate delay time, and the functlorh(y,yTo) can

Jirgen Parisi, Physical Institute,University of Bayreuth, D-954400€ recoyered. The trajectory in the infinite dimensional phase
Bayreuth, Germany. space y(t) is projected to several three-dimensional
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(yT,y,y) spaces upon variation af. The appropriate value

7= 71 IS just the one for which the projected trajectg;ryiies
on a surface, representing a fingerprint of the time-delay-

induced instability. Projecting the trajectori to the

(yTo,y,y) space, the projected trajectory yields the surface 03

h(y,yTO) in the counterdomairDX D. With a fit procedure ool - 0 — ]
the yet unknown functiorh(y,y, ) can be determined in 0 20 40 60
DX D. Therefore, the complete scalar time-delay differential t

equation has been recovered from the time series. In some
cases, it is more convenient to intersect the trajecyorin
the (y,,y,y) space with a surfac&(y,,y,y)=0, which

yields a series of pointg,=(y!,y',y'). For 7= r;, the points  Mackey-Glass system. Part of the time series is shown in
come to lie on a curve and the fractal dimension of the poinFig. 1. We used 500 000 data points with a time step of
set has to be less than or equal to 1. 0.01 for the analysis. The dimension of the chaotic attractor
The analysis method is also applicable if noise is added tguas estimated with the help of the Grassberger-Procaccia
the time series. The only effect of additional noise is that thealgorithm[2] to be clearly larger than 5. To recover the delay
projected time series in they(o,y,y) space is not perfectly time 7, and the functiong andg from the time series, we
enclosed in a two-dimensional surface, but the surface igPplied the analysis method outlined above. We projected
somewhat blurred up. If the analysis is done with an interthe trajectoryy(t) from the infinite dimensional phase space
sected trajectory, the alignment of the noisy data is not perto several ¥, ,y,y)spaces under variation of and inter-

fect. The arguments presented above do not require the dygcteq the projected trajectogy with the (y=1.1) plane,
namics to be settled on its chaotic attractor. Therefore, it iSvhich is repeatedly traversed by the trajectory, as can be
also possible to analyze transient chaotic dynamics. Reseen in Fig. 1. The results are the tintesvhere the trajec-

cently, the qoexistence of attractors of time-delay systemgOry traverses they(=1.1) plane and the intersection points
has been pointed o{6]. The only requirement for the analy- -

i i ; ;

sis method is that the trajectory obeys the time-evolution 7~ (y,,l;l,y'). For 7 being the appropriate valuey, the
equation(1) which holds for all coexisting attractors in a Point sety’ is correlated via Eq(3),
scalar time-delay system. Therefore, the method is appli-
cable, no matter in which attractor the dynamics has decided yi=f(yl )—g(1.1) (5)
to settle. The analysis requires only short time series, which 0
makes it well-suited to be applied on experimental situations, . .
We successfully apply the method to time series gained frorﬁmd' therefore, must have a fraqtgll d|m_en3|0r1 less than or
a computer experiment and from two different electronic os€dual to 1. Then, we ordered thg!(y') points with respect
cillators. We show the robustness of the method to additiondlo the values of/.. A simple measure for the alignment of
noise by analyzing noisy time series. the points is the lengtih of a polygon line connecting all

We numerically calculated the time series of the scalar
time-delay differential equation

1.0 K ' I I -t
y(t)=f(y,)—a(y), (3) ’

FIG. 1. Time series of the scalar time-delay syst&mobtained
from a computer experiment-§=40.00).

f ~ 2_7y7_0 N 0.8 1
(Yrg) = 1+yD0 Co» 10
K = o6l

g(y)=—0.56%+18.1%2— 38.35/°+ 28.56/*— 6.8y°— c,,

0.5

with the initial condition 0.4 H .
s 38 40 42

y()=yo(t), —7o<t<O, (4) 0 20 20 60 30

T

which is of the form(1) with h(y..y)=f(y,)—gd(y). The

functiong has been chosen to be noninvertible in the coun- g 2. LengthL of the polygon line connecting all ordered
terdomainD. The definition of the function§ andg is am- points of the projected point sey(,y') versusr. L has been nor-

biguous in the sense that adding a constanto f can al-  jjized so that a maximally uncorrelated point set has the value
ways be cancelled by subtracting, from g without | —1 0 The inset shows a close-up of thexis around the local
changingh and, therefore, leaving the dynamics of E8) minimum atr= 7,=40.00. Additionally,L(7) curves gained from
unchanged. The control parameter is the delay tige  the analysis of noisy time series are shogmo additional noise,
Equation(3) is somewhat similar to the Mackey-Glass equa-straight line; signal-to-noise ratio of 100, open circles; and signal-
tion [7], except for the functiorg, which is linear in the to-noise ratio of 10, squargs
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dy/dt

Yi Y.

FIG. 4. (a) Comparison of the functiom (line) of Eq. (3) with
its recovery from the time serig@oints. (b) Comparison of the
function g (solid line) of Eq. (3) with its recovery from the time
series(circles.

g(1.1)=0. (6)

Then, Eq.(5) reads

y'=f(y,). (7)

Therefore, functiorf is recovered by analyzing the intersec-
tion points;?'TO in the (y,yTO) plane. To recover the function
g, we intersected the time series with tne,o(zl.l) plane.

FIG. 3. (@—(c) Trajectoryy (t) which has been projected from The resulting point Sefj =(yj,yj) is correlated via
the infinite dimensional phase space to tiye,y,y) space under o
variation of 7. (a) 7= 20.00,(b) 7=39.60,(c) 7= 79=40.00.(d)—(f) yj —f(1 1)—g(yj) )
Projected point sey' =(y' ,y') resulting from the intersection of ' '

the projected trajectory,(t) with the (y=1.1) plane under varia- The valuef(1.1) has been taken from the time series using
tion of 7. (d) 7=20.00,(e) 7=39.60,(f) 7= 7=40.00. Eq. (7). In Figs. 4a)—4(b), we compare the functionsand

. P . . g as they have been defined in Eg) with the recovery of
ordered_ points ¥7.y). The IengthL as a function ofr is the functionsf andg from the time series. We emphasize
shpwn |ni F.|g. 2. Forr=0, L(7) is m|n|maI: becaus.e the that a no fit parameter is involved.
points /;,y') are ordered along the diagonal in the e checked the robustness of the method to additional
(y'.y') plane.L(7) increases withr and eventually reaches noise by analyzing noisy time series, which had been pro-
a plateau, where the pointg'(,y') are maximally uncorre- duced by adding Gaussian noise to the time series of#q.
lated. This is due to short-time correlations of the signalWe analyzed two noisy time series with a signal-to-noise
Eventually, L(7) decreases again and shows a dip for ratio(SNR) of 10 and 100. In both cases, the additional noise
reaching the appropriate valug. A further decrease of Wwas partially removed with a nearest-neighbor filter a
L(7) is observed for=27,. In Figs. 3a)—3(c), we show the SNR of 100, average over six neighbors; f_or a SNR o_f 10,
projectionsy (t) of the trajectoryy(t) from the infinite di- @verage over 20 neighborfter that, the noisy time series

. . - were analyzed in the same way as has been described above.

mensional phase space to different. (y,y) spaces under

iati fr Clearly f hing. th it The inset of Fig. 2 shows the result of the analysis. The
valrla 'ontﬁ 7. ~learly, orfrtr?pprogc tmc?t e at\pprori]rla N length L of the polygon line exhibits a local minimum for
vajue o, (n€ appearance ot Ine projected trajectory changes, 7o. In the case of the time series with a SNR of 10, the

In I_:ig._3(c), the projected trajecto_ry is em_bedded ina surfacqocal minimum is again sharp, but somewhat less pro-
which is dete.zrmlned' bY. the funf:tldm In F|gs..f{d)—3(f). WE " nounced. We conjecture that the method is robust with re-
show the point Set)(‘w{") resulting from the intersection of gpect to additional noise and, therefore, well suited for the
the projected trajectory, with the (y=1.1) plane. The point analysis of experimental data.

set is projected to they( ,y) plane. According to Eq5), the Finally, we successfully applied the method to experimen-
points are aligned along the functidnfor 7=, With the  tal ime series gained from two different types of electronic
appropriate valuer,, we are in the position to recover the oscHIatprs. The first one is the Shln.I’IkI.OSCIHaIEB,S.)]. The
functionsf andg from the time series. The functiorisand ~ dynamics of the second oscillatt0] is time-delay induced

g are ambiguous with respect to the addition of a constan@"d mimics the dynamics of the Mackey-Glass equation. In
termc,, as has been outlined above. Therefore, one is free tboth cases, we intersected the trajectory with the=0Q)
remove the ambiguity by invoking an additional condition, plane. The resulting point set was represented iry ay)
which we choose to be space with different values of Then, we ordered the points
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. . In conclusion, we have presented a method capable of
" revealing nonlocal correlations in time of scalar systems by
( \ ﬁ. analyzing the time series. If the dynamics of the investigated
Y system is governed by a scalar time-delay differential equa-
tion, we are able to recover the scalar time-delay differential
equation. There are no constraints on the dimensionality of
the attractor. Since scalar time-delay systems are able to ex-
0 _ hibit high-dimensional chaos, our method might pave the
© [ms] © [ms] VL IV] road to inspecting high-dimensional chaotic systems, where
conventional time-series analysis techniques already fail.
FIG. 5. LengthL of the polygon line connecting all ordered Furthermore, the motion is not required to be settled on its
points of the projected point sgt=(y'y') versusr for (@) the  attractor. The method is not strongly sensitive to additional
Shinriki, and(b) the Mackey-Glass oscillatot.(7) has been nor- nojse. We have successfully applied the method to time se-
malized so that it has the vallle=1 for an uncorrelated point set. jag gained from a computer experiment and to experimental
(c) Comparison of the nonlinear characteristics of the Mackey-yaia gained from two different types of electronic oscillators.
Glass oscillator, which is the functlof(yrq) of an ansatz of the While, in general, the verification of dynamical models is
fc_’rm h(,y’xfo):f(yfo)+g(y)’ meésured q’reetly on the oscillator a highly complicated task, we have shown that the identifi-
(line) with its recovery from the time seridglots. cation of scalar time-delay systems can be accomplished eas-
ily and, thus, allows a detailed comparison of the model
equation with experimental time series. In several disci-
plines, e.g., hydrodynami¢42] , chemistry{13], laser phys-

(Al A
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with respect toy, and the length_ of a polygon line con-
necting all ordered pointsy(,y') was measured. The results

are presented in Figs(& and 3b). In both cases.(7) has  jc5114] and physiology7,15], time-delay effects have been
a local minimum for small values of as a result of short- 554564 to induce dynamical instabilities. With the help of

range correlations in timeL(7) increases in time and oy method, there is a good chance to verify these models by
reaches a plateau. For the Shinriki oscillator, no further deanalyzing the experimental time series. If the dynamics is

crease oL (7) is observed for increasing[Fig. a)]. Such jndeed governed by a time delay, the delay time and the
a finding clearly shows that the dynamics of the Shinrikitime-evolution equation can be determined. Current and fu-
oscillator is not time-delay induced. Analyzing the Mackey-yre research activities of the authors concentrate on extend-
Glass oscillatofFig. 5b)], one finds sharp dips ib(7) for  jng the time-series analysis method to nonscalar time-delay

7=7o and 7=2r,. This is a direct evidence for correlations systems as well as to time-delay systems with multiple delay
in time, which are induced by the time deléyr details, see tjmes.

[11]). Obviously, the method is able to identify nonlocal cor-
relations in time from the time series. Eventually, the non- We thankfully acknowledge valuable discussions with J.
linear characteristics of the electronic oscillator is comparedPeinke and K. Pyragas and financial support of the Deutsche

to its recovery from the time seri¢Eig. 5(c)]. Forschungsgemeinschatft.
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